An improvement of two nonstandard finite difference schemes for two population mathematical models
نویسندگان
چکیده
The aim of this paper is to design appropriate nonstandard finite difference (NSFD) schemes for two population mathematical models based on coupled nonlinear ordinary differential equations. Our work clarifies existing constructions NSFD these models, which are not in full compliance with Mickens' methodology. We select the denominator functions discrete first-order derivatives depending existence conservation laws, by following empirical rules suggested Mickens. fix nonlocal discretizations that preserve positivity schemes, irrespective value step size. Thus, our dynamically consistent models. conduct a numerical study assess performance method.
منابع مشابه
Nonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملnonstandard finite difference schemes for differential equations
in this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (nsfds). numerical examples confirming then efficiency of schemes, for some differential equations are provided. in order toillustrate the accuracy of the new nsfds, the numerical results are compared with s...
متن کاملDynamically consistent nonstandard finite difference schemes for epidemiological models
This work is the numerical analysis and computational companion of the paper by Kamgang and Sallet (Math. Biosc. 213 (2008), pp. 1–12) where threshold conditions for epidemiological models and the global stability of the disease-free equilibrium (DFE) are studied. We establish a discrete counterpart of the main continuous result that guarantees the global asymptotic stability (GAS) of the DFE f...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Difference Equations and Applications
سال: 2021
ISSN: ['1026-7042', '1563-5120', '1023-6198']
DOI: https://doi.org/10.1080/10236198.2021.1903888